EVERLANE ITALY 'THE MODERN POINT LOAFER' FLATS US $300 BLACK LEATHER US FLATS 6.5 NWOB! e346ea

EVERLANE ITALY 'THE MODERN POINT LOAFER' FLATS US $300 BLACK LEATHER  US FLATS 6.5 NWOB! e346eaEVERLANE ITALY 'THE MODERN POINT LOAFER' FLATS US $300 BLACK LEATHER  US FLATS 6.5 NWOB! e346eaEVERLANE ITALY 'THE MODERN POINT LOAFER' FLATS US $300 BLACK LEATHER  US FLATS 6.5 NWOB! e346eaEVERLANE ITALY 'THE MODERN POINT LOAFER' FLATS US $300 BLACK LEATHER  US FLATS 6.5 NWOB! e346eaEVERLANE ITALY 'THE MODERN POINT LOAFER' FLATS US $300 BLACK LEATHER  US FLATS 6.5 NWOB! e346eaEVERLANE ITALY 'THE MODERN POINT LOAFER' FLATS US $300 BLACK LEATHER  US FLATS 6.5 NWOB! e346eaEVERLANE ITALY 'THE MODERN POINT LOAFER' FLATS US $300 BLACK LEATHER  US FLATS 6.5 NWOB! e346eaEVERLANE ITALY 'THE MODERN POINT LOAFER' FLATS US $300 BLACK LEATHER  US FLATS 6.5 NWOB! e346eaEVERLANE ITALY 'THE MODERN POINT LOAFER' FLATS US $300 BLACK LEATHER  US FLATS 6.5 NWOB! e346eaEVERLANE ITALY 'THE MODERN POINT LOAFER' FLATS US $300 BLACK LEATHER  US FLATS 6.5 NWOB! e346ea

Item specifics

Condition: New without box :
A brand-new, unused, and unworn item (including handmade items) that is not in original packaging or may be missing original packaging materials (such as the original box or bag). The original tags may not be attached. For example, new shoes (with absolutely no signs of wear) that are no longer in their original box fall into this category. See all condition definitions- opens in a new window or tab
Seller Notes: INCLUDES PROTECTIVE SOLE LINERS!
Country/Region of Manufacture: Italy Color: Black
Style: Loafers Occasion: Wear to Work
Heel Height: Flat (0 to 1/2 in.) Brand: Everlane
US Shoe Size (Women's): US 6.5 Toe Type: Pointed Toe
Material: Leather UPC: Does not apply
LOEFFLER RANDALL Women's Mara-HCN Espadrille Flat - Choose SZ/Color,Lanvin Ballet Flats Burgundy Leather Shoes 37 France,Jambu Womens azalea Closed Toe Mules, Blush, Size 6.0,Aerosoles LANDFALL Womens Landfall Flat- Choose SZ/Color.,Salvatore Ferragamo Women's Pim Nero Patent Flat 5.5 M,Man/Woman Manolo Blahnik Crespony 70 Satin Mule Packaging diversity comfortability Explosive good goods,Cobb Hill Rockport Women's Deidre Slip on Loafer, Brown, 6 M US,CLARKS Women's Medora Nina Flat, Black Leather, 6.5 M US,NIB $445Tod's Gommini Tie-Front Nubuck Drivers; Size 8; Turquoise color,Opening Ceremony Black Leather Cut Out Mules Womens Size M,Proenza Schouler Womens Fringe Slipper Pointed Toe Shoe Black Leather US 8 MCLARKS Women's Emslie Warren Slip-on Loafer,Dark Brown,9.5 M US,L.K. Bennett Iona Pin Old Rose Calf Leather Loafer Size 36.5,LifeStride Women's Samantha Slip-On Loafer - Choose SZ/Color,Mr/Ms Sam Edelman Women's Loraine Loafer Various goods First quality Very practical,ZARA NEW WOMAN SS18 RED FLAT SLINGBACK SHOES REF:7594/301,Nine West Women's Trophywife Synthetic Ballet Flat - Choose SZ/Color,Christian Louboutin Solasofia Bow Red Sole Skimmer Flat Pointy Toe, Black 41,DOLCE & GABBANA metallic pink leather folding ballet flats sz. 37 $450ROBERT CLERGERIE Ayane Rouge Red Patent Leather Perforated Ballet Flats 7.5 $400,Valentino Garavani Blush Pink Ballet Flats W Bow Bordered In Gold Size 37.5 EUCorral Circle G Women's Western Taupe Woven Shoes P5223G.H. Bass & Co. Women's Kelsey Pointed Toe Flat,SIXTY SEVEN Womens Yellow Suede Loafers Sz 37,SoftWalk Women's Waverly Mary Jane Flat - Choose SZ/Color,Men's/Women's Skechers Women's Seager-Stat-Scalloped Collar, Engineered Skech-Knit... Guarantee quality and quantity Wholesale trade retail priceEARTHIES Womens 'Granada' Black Leather Loafers Sz 5.5,THELMA THE PENNY LOAFER - SADDLE SPECTATOR,Man/Woman Demonia DAISY-07 Guarantee quality and quantity Elegant and sturdy packaging Fashion versatile shoes,ECCO Womens Enchant Closed Toe Ballet Flats, Black, Size 11.5

EVERLANE ITALY 'THE MODERN POINT LOAFER' FLATS US $300 BLACK LEATHER US FLATS 6.5 NWOB! e346ea

Science

The earth is rising in one part of Antarctica at one of the fastest rates ever recorded, as ice rapidly disappears and weight is lifted off the bedrock, a new international study has found.

The findings, reported in the journal Science, have surprising and positive implications for the survival of the West Antarctic Ice Sheet (WAIS). The unexpectedly fast rate of the rising earth may markedly increase the stability of the ice sheet against catastrophic collapse due to ice loss, scientists say.

Scientists have been concerned that this ice sheet is particularly precarious in the face of a warming climate and ocean currents, because it is grounded hundreds to thousands of feet below sea level -- unlike the ice sheets of East Antarctica or Greenland -- and its base slopes inland. This bowl-like topography makes it susceptible to runaway destabilization and even complete collapse over centuries to thousands of years.

"We studied a surprising and important mechanism that may slow the demise of the massive WAIS by lifting up the bedrock and sediments beneath the ice sheet," explained CSU Professor Rick Aster, a co-author of the study and head of the Department of Geosciences at the university.

The entirety of West Antarctica contains enough ice that, if it were to melt, it would contribute more than ten feet of average global sea level rise. Furthermore, the ice sheet is so massive that it gravitationally attracts an ocean bulge that, if released, would lead to an additional increase of three feet or more to sea level in parts of the northern hemisphere.

The WAIS is currently contributing approximately 25 % of global melting land-based ice each year, and recent satellite-based studies have shown that this amount has increased in recent decades. This figure is equivalent to about 37 cubic miles or a cube of over three miles on each side. As the rapid rise of the earth in this area also affects gravity measurements, scientists believe that up to 10 % more ice has disappeared in this part of Antarctica than previously assumed.

Terry Wilson, professor emeritus of earth sciences at The Ohio State University, assembles a GPS antenna on a monument fixed to bedrock. This GPS unit is at Westhaven Nunatak in the Transantarctic Mountains. CREDIT: The Polar Earth Observing Network

Modeling Ice Sheet Melt and Bedrock Uplift

Co-authors of the study based at The Ohio State University led the installation of six sensitive GPS stations (part of the POLENET-ANET array) on rock outcrops around the remote region to measure the regional uplift of the Earth in response to the thinning ice sheet. Measurements showed that the bedrock uplift rates near the coast of West Antarctica were as high as 1.6 inches per year, one of the fastest rates ever recorded in glacial areas. In contrast, places like Iceland and Alaska, which have what are considered rapid uplift rates, generally are measured rising 20 to 30 millimeters a year.

"This very rapid uplift may slow the runaway wasting and eventual collapse of the ice sheet," said Aster. "The uplift tends to stabilize the critical grounding line where the ice sheet loses contact with underlying bedrock or sediment and goes afloat." This grounding line then counteracts the process of the ice sheet collapsing.

Researchers also found that the uplift is accelerating and predicted that it will continue to do so into the next century. It is estimate that in 100 years, uplift rates at the GPS sites will be 2.5 to 3.5 times more rapid than currently observed.

"Our research indicates that recent and ongoing ice loss in the region has been underestimated by approximately 10 % in past studies, because this bedrock uplift was inadequately accounted for in satellite measurements," said Aster.

Terry Wilson, professor emeritus of Earth Sciences at The Ohio State University, said the rapid rise of the bedrock in this part of Antarctica suggests that the geological conditions beneath the ice are very different from what scientists had previously believed. While modeling studies have shown that bedrock uplift could theoretically protect WAIS from collapse, it was believed that the process would take too long to have practical effects.

"The rate of uplift we found is unusual and very surprising. It's a game changer. We previously thought uplift would occur over thousands of years at a very slow rate, not enough to have a stabilizing effect on the ice sheet. Our results suggest the stabilizing effect may only take decades," Wilson said.

Researchers have also deployed a large network of sensitive seismographs across Antarctica to produce seismic tomographic images -- analogous to a gigantic CAT scan -- of the deep Earth below Antarctica. This work assisted in the interpretation and modeling of the GPS uplift data by providing detailed mapping of a vast region of Earth's mantle up to 400 miles below West Antarctica.

These new measurements of Glacial Isostatic Adjustment (GIA), the scientific term for uplift due to ice sheet unloading, are an important part of a wider story about the fate of the Antarctic ice sheets, said Doug Kowalewski, the Antarctic Earth Sciences program director in the National Science Foundation's Office of Polar Programs (OPP).

"The observed GIA response captured by the POLENET array is an order of magnitude greater than previously thought. The upcoming challenge is to couple the GIA observations with ice-sheet models," Kowalewski said. "These data will be of great value to the modeling community who examine the complex relationships between GIA, sub-ice shelf ocean circulation, and ultimately, ice sheet stability."

"These results provide an important contribution to our understanding of the dynamics of the Earth's bedrock, along with the thinning of ice in Antarctica. The large amount of water stored in Antarctica has implications for the whole planet," said lead study author Valentina R. Barletta, who started this work at Ohio State and now is a postdoctoral researcher at the National Space Institute (DTU Space) at the Technical University of Denmark. "The new findings raise the need to improve ice models to get a more precise picture of what will happen in the future."

Rare Good News for Antarctica